
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 1970

A study on program verification using EFSBI

approach

P.Joshna
1
 , E.Sandhya

2
 , T.Lakshmi

3

Dept of Information Technology, Sree Vidyaniketan Engineering College, Tirupati, Andhra Pradesh, India

Abstract: Testing plays an important role in any software industry. Now a day it is very difficult to release completely

defect free product. For detecting defects external formal specification based inspection is used. It can be carried out by

step by step process and include five activities. First step, functional scenarios are derived from specification. Second

step is paths are derived from program. Third step is linking from scenarios to paths. Fourth step is to reading and

analyzing of paths against the corresponding scenarios and finally inspection report is produced. For increasing the

effectiveness of formal inspection methods it can be applied in SPRT (Specification-Based Program Review Tool).

Finally to compare this method with the perspective based reading then the results shows that the method is less

effective in implementation-related defects rather than functional-related defects.

Keywords: Formal methods, Static analysis, validation of programs.

I. INTRODUCTION

 Static analysis [1] is the analysis of computer software

which doesn’t actually require executing or running the

software. Static analysis tools only look on non runtime

environment such as coverity-static analysis tools.

Coverity-static analysis [2] is best-in class analysis engine

it identifies the most critical errors in C/C++, Java and C#

code bases. In single analysis, it can be referred as

hundreds of users, thousands of defects and million lines

of code [3]. Static analysis techniques only give

importance to administrative aspects such as meetings and

managements [4] and also it is only concentrate on

implementation-related defects rather than function-related

defects.

 For overcoming the above defects extended formal

specification based inspection is used. The inspection

objective is to determine whether every functional

scenario derived from the specification is correctly

implanted by a set of program paths of the program. The

formal inspection method mainly concentrate on

requirement related errors and function-related defects. By

using specification language such as VDM, Z and SOFL

(structured-object oriented formal language) [5] some sort

of formal methods are derived. SOFL is a combination of

structured language, formal language and object-oriented

language. By using this code quality is improved, enhance

efficiency and reduce human error during inspection and

improve the process quality of software inspection.

Perspective-Based Reading (PBR) technique [6] used for

software inspections from the Scenario-Based Reading

(SBR) family of reading techniques designed for defect

detection in a requirements document. The main aim of

perspective-based reading gives developers a set of

procedures to inspect software products for defects. For

correcting and detecting these defects early in the

development process can save a lot of time and money and

possibly avoid some embarrassment. But it is not effective

in detecting functional-related defects rather than in

implementation-related defects. So that extended formal

specification based inspection method [7] is used to cover

the above mentioned defects.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 1971

II. PROCESS INSPECTION

 An inspection is a visual examination of a software

product to detect and identify software anomalies,

including errors, defects and deviations from standards

and specifications. The inspection method is supported by

inspection process. The process consists of five activities:

functional scenarios are derived from specification; paths

are derived from program; linking scenarios to paths;

analyzing paths against corresponding scenarios; and

finally produce an inspection report. Every activity that

describes an operation is represented by a diamond in the

figure and every data item is represented as a

“specification language” or “functional scenario”, which is

represented by a box. An arrow from box to an operation

means that the data item of the box is an input to the

operation. An arrow from one operation to another

represents a control flow.

To derive functional scenarios activity takes a

specification as input and transforms it into an FSF

(functional scenario form) from which all the scenarios are

obtained. The important idea of the transformation is first

to convert the post condition into a disjunctive normal

forms (DNF) using a standard algorithm and then

transform it into an FSF. The transformation from DNF to

FSF takes several steps. At the each disjunctive clause in

the DNF is transformed into a conjunction of a guard

condition and a defining condition. Second activity, all the

disjunctive clauses with the same guard conditions are

merged into a conjunction of the guard condition and the

disjunction of their defining conditions. Third activity, the

precondition and each merged disjunctive clause are

conjoined to build scenarios.

Java program
Specification

language

Functional
scenarios

are derived

Program
paths are
derived

Linking
scenarios to

paths

Analyzing
paths against

corresponding
scenarios

Inspection
report is

produced

 Fig: process for inspection

To derive program paths activity takes a program as input

and derives all necessary program paths for analysis. To

address this problem, we adopt the following strategy for

expressing paths: For a sequential structure such as C1;

C2, we produce an execution sequence denoted by [C1;

C2], which is part of a related path. For if-then conditional

structure such as if (e) and C, we produce two sequences

[e; C] and [!e], respectively, where !e represents the

negation of the logical expression e. For while loop such

as while (e) C, we produce two sequences [while e, C,!e]

and [!e] to represent all the possible sequences resulting

from executions of the loop.

To Link scenarios to paths activity takes both derived

functional scenarios and program paths as input to

generate an inspection target lists (ITL) and a checklists.

The checklist is related to the ITL: It contain a set of

questions which can be derived automatically from the

inspection target in the ITL. For example, we can derive

the following questions from the target (f, q): “Is each

symbol in f correctly implemented by q?”, “Is each atomic

condition in f correctly implemented by q?” so on . The

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 1972

above questions are carried out by a four level analysis are

discussed in next activity.

To analyze paths against the corresponding functional

scenarios step uses the checklists and the scenarios as

guidelines to analyzing the related paths. Since the

program paths are located in the program itself and

analyzing them usually requires the inspector to refer the

related contextual information (e.g., variable or operation

declaration), the program itself also necessarily used for

this step. For example, to answer the above mentioned

questions derived from the target (f; q), the analysis can be

done at four levels such as:

1. The symbol levels,

2. The atomic condition levels,

3. The condition levels, and

4. The scenario levels.

The four-level analysis follows the “divide-and-conquer”

principle [8]: Check components and combinations.

At last activity, produce an inspection report, generates a

document to report all the defects revealed during the

analysis and to provide comments concerning any

suspicious statements or conditions on the paths. The

defects are detected need to be corrected by modification

of program and the comments are served as a reminder

messages for further clarification or confirmation by the

individuals concerned (e.g., programmers, analysts,

inspectors, or all of them).

III. EXPERIMENTAL COMPARISON

Applying this approach, we have used 84 undergraduates

to conduct an experiment on our FSBI comparing it with

one of the popular inspection technique known as

perspective-based reading [6]. Both methods are applied to

part of a banking systems, and the results are analyzed and

compared in three different ways: 1) how effectively FSBI

works against the PBR in defect detection, 2) how the

inspector is able to relate effective use of FSBI and PBR,

respectively, and 3) what are the challenges that the

inspectors are likely to face in using FSBI, and how they

can be managed.

Perspective-Based Reading (PBR) is a technique for

software inspection from the scenario-based reading

(SBR) family of reading techniques are designed for

defect detection in a requirement document [2]. The

percentage to each average defects found denotes the

average (defect) detection effectiveness for that category,

which is calculated using the following formulas:

Average detection of effectiveness

 = (average number of defects found / total number of

 defects) × 100%

Average number of defects found

 = (d1+d2+
.............................

+dn) / n

IV SPECIFICATION-BASED PROGRAM REVIEW

TOOL (SPRT)

Effective tool supports are crucial for successfully

applying software review techniques in practice. We

describe the design and implementation of a software tools

to support an approach to reviewing programs on the basis

of their formal specifications. The approaches were

initially proposed in the previous publications to

improving the rigor, repeatability, and effectiveness of

existing code review methods. The Specification-Based

Program Review Tool (SPRT) [9] improves the

effectiveness of our inspection method by taking the

following steps: Functional scenarios are automatically

generated; program paths are automatically generated,

mapping scenarios to paths, support for reading and

analysis of the code, supports for the input of defect

descriptions and comments.

V. RELATED WORK

To explain why formal specification techniques are used

to discover problems in system requirements. To

describing the use of algebraic techniques for interface

specification and also describes the use of model-based

techniques for behavioral specification The use of formal

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 1973

specification to provide the inspection of programs was

assessing safety critical software for the Darlington

Nuclear Plant in Canada [10]. This technique known as

Document Driven Inspection (DDI) [11] , was developed

to cope with perceived difficulties experienced in the

above project Formal specification techniques are part of a

more general collection of techniques that are known as

formal methods. These all are based on mathematical

representations and analysis of software. Formal methods

include formal specifications, specification analysis and

proofs, transformational development, program

verification. The principal benefit of formal method is in

reducing the number of faults in systems. As a result, their

main area of applicability is in critical system engineering.

There are several successful projects where formal

methods are used in this area. In this area formal method is

used to be cost-effective because high system failure costs

must be avoided. The formal Specification was written in

Parnas’ SCR (Software Cost Reduction) tabular notation

[12] to explain the desired functions for the program,

where the program is a module or a segment Although

there is a relatively high cost in method development and

education for the initial users of the method, the inspection

discovered many unsuspected deficiencies between the

code and the requirements. In the first activity, the

functional table reflecting the behavior of the code is

derived manually from the code and then compared with

the tables in the design document. In the second activity,

the function table in the design is compared with the tables

in the requirement documents, with two preliminary goals:

1) prove that the behavior described in the design matches

the requirements, and 2) identify behavior in the design

that is specified in the requirements, and show that it is

justified and that it cannot negatively affects the required

behavior. By applying inspection methods, many defects

are found in particular the “critical” ones, such as those

which are causing runtime crashes, infinite loops, and

unreachable code, may be detected and eliminated before

testing begins, which will make testing more effective.

VI. CONCLUSION

For verifying and validating the programs extended formal

specification based inspection method is used. The main

aim of this method is to use inspection to determine

whether every functional scenarios defined in the

specification is correctly implemented by a set of program

paths of the program and whether every path is correctly

implemented by a program. This method is more effective

in detecting functional-related defects rather than

implementation-related defects. By using specification

based program review tool to improve the effectiveness of

the inspection method.

REFERENCES

[1] T. Gilb and D. Graham, “Software Inspection”. Addison
Wesley, 1993.

[2] “Coverity Static Analysis”,

http://www.coverity.com/products/ static-analysis.html, 2012.
[3] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,

C. Henri-Gros, A. Kamsky, S. Mcpeak, and D. Engler, “A Few Billion

Lines of Code Later: Using Static Analysis to Find Bugs in the Real
World,” Comm. ACM, vol. 53, no. 2, pp. 66-75, Feb. 2010.

[4] O. Laitenberger, “A Survey of Software Inspection

Technologies,” Handbook of Software Eng. and Knowledge Eng., pp.
517-556, World Scientific Publishing, 2002.

[5] S.Liu, “Formal Engineering for Industrial Software

Development Using the SOFL Method”. Springer-Verlag, 2004.
[6] V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull,

S. Sorumgard, and M. Zelkowitz, “The Empirical Investigation of

Perspective- Based Reading,” Empirical Software Eng., vol. 2, no. 1, pp.
133-164, 1996.

[7] G. Babin and F. Lustman, “Application of Formal Methods to

Scenario-Based Requirements Engineering,” Int’l J. Computers and
Applications, vol. 23, no. 3, pp. 141-151, 2001.

[8] D.L. Parnas and D.M. Weiss, “Active Design Reviews:

Principles and Practices,” J. Systems and Software, vol. 7, no. 4, pp. 259-

265, 1987.

[9] Fumiko Nagoya, Shaoying Liu, and Yuting Chen “A Tool

and Case Study for Specification-Based Program Review” Department
of Computer Science

[10] D.L. Parnas, G. Asmis, and J. Madey, “Assessment of Safety-

Critical Software in Nuclear Power Plants,” “Nuclear Safety”, vol. 32,
no. 2, pp. 189-198, Apr.-June 1991.

[11] David Lorge Parnas, “Precise Documentation: The Key To

Better Software” middle road software, Inc.
[12] D.L. Parnas, “Tabular Representation of Relations,” CRL

Report 260, McMaster Univ., Comm. Research Laboratory, TRIO

(Telecomm. Research Inst. of Ontario), Oct. 1992.

http://www.coverity.com/products/

